X-ray vision has long seemed like a far-fetched sci-fi fantasy, but over the last decade a team led by Professor Dina Katabi from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has continually gotten us closer to seeing through walls. Their latest project, “RF-Pose,” uses artificial intelligence (AI) to teach wireless devices to sense people’s postures and movement, even from the other side of a wall.

The researchers use a neural network to analyze radio signals that bounce off people’s bodies, and can then create a dynamic stick figure that walks, stops, sits, and moves its limbs as the person performs those actions.

The team says that RF-Pose could be used to monitor diseases like Parkinson’s, multiple sclerosis (MS), and muscular dystrophy, providing a better understanding of disease progression and allowing doctors to adjust medications accordingly. It could also help elderly people live more independently, while providing the added security of monitoring for falls, injuries and changes in activity patterns. The team is currently working with doctors to explore RF-Pose’s applications in health care.

All data the team collected has subjects’ consent and is anonymized and encrypted to protect user privacy. For future real-world applications, they plans to implement a “consent mechanism” in which the person who installs the device is cued to do a specific set of movements in order for it to begin to monitor the environment.

“We’ve seen that monitoring patients’ walking speed and ability to do basic activities on their own gives health care providers a window into their lives that they didn’t have before, which could be meaningful for a whole range of diseases,” says Katabi, who co-wrote a new paper about the project. “A key advantage of our approach is that patients do not have to wear sensors or remember to charge their devices.”

Source: Massachusetts Institute of Technology